

Областное государственное бюджетное профессиональное образовательное учреждение «Ульяновский колледж градостроительства и права»

Низамова И.В.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по выполнению самостоятельной работы на тему:

СОЗДАНИЕ ТВЕРДОТЕЛЬНОЙ МОДЕЛИ В РАБОЧЕМ ПРОСТРАНСТВЕ «ЗД МОДЕЛИРОВАНИЕ» СИСТЕМЫ AutoCAD

для студентов специальности 08.02.05 «Строительство и эксплуатация автомобильных дорог и аэродромов»

Ульяновск, 2024

РАССМОТРЕНО

На заседании МЦК математических и общих естественно-научных дисциплин Протокол № _____от « ____» _____2024 г. Председатель МЦК _____/Низамова И.В./

РЕКОМЕНДОВАНО

к внедрению и использованию в учебном процессе						
на заседании Методи	на заседании Методического совета					
Протокол №	от	2024 г.				
Заместитель директор	ра по НМР	/Уханова О.А./				

Учебно-методическое пособие предназначено для студентов, выполняющих аудиторную и самостоятельную работу в программе AutoCAD по ПМ 01 МДК 01.04 Информационные технологии в профессиональной деятельности, обучающихся по специальности 08.02.05 «Строительство и эксплуатация автомобильных дорог и аэродромов».

Пособие содержит основные сведения о типах трехмерных моделей, создаваемых в программе, используемых команд для просмотра, отображения, построения и редактирования твердотельных объектов. Приведены примеры создания твердотельных моделей разной сложности при выполнении практических работ, предусмотренных программой МДК 01.04 «Информационные технологии в профессиональной деятельности».

Предлагаемое пособие способствуют развитию у студентов профессиональных компетенций.

СОДЕРЖАНИЕ

Введение	4
1 Рабочее пространство «3D моделирование»	5
2 Системы координат	5
3 Команды просмотра	7
4 Отображение трехмерных объектов	8
5 Твердотельные модели	9
6 Редактирование тел	10
7 Создание твердотельных объектов	11
Литература	26

ВВЕДЕНИЕ

В настоящее время современные программные графические системы все больше направлены на трехмерное проектирование (моделирование), позволяющее создавать реальные трехмерные модели и на их основе получать двумерные проекции.

В AutoCAD можно создавать три типа моделей трехмерных объектов: каркасные, поверхностные и твердотельные.

Каркасная модель отображается в виде ребер. Модель прозрачна, потому что не содержит поверхностей – граней, скрывающих ребра. Каркасная модель имеет линейные размеры, но не имеет объема.

Поверхностные модели содержат информацию о ребрах и поверхностях, формирующих объем, поэтому они обеспечивают более точное описание объектов. Поверхностная модель имеет объем, но не имеет массы.

Твердотельные модели представляют собой точные копии реальных объектов, так как дает полную информацию о внешних поверхностях, ребрах объекта, объеме и массе объекта. Если монолитную модель разрезать, то станет видно ее внутреннее устройство.

Создание твердотельной модели дает возможность представить изделие в наглядном виде, проверять прочностные свойства проектируемого изделия, получать рабочие чертежи с изображениями всех основных видов, сечений и разрезов.

В результате изучения МДК 01.04 Информационные технологии в профессиональной деятельности, обучающиеся по специальности 08.02.05 «Строительство и эксплуатация автомобильных дорог и аэродромов» должны уметь выполнять чертежи и схемы по специальности с использованием прикладных программных средств и знать моделирование в рамках графических систем.

Пособие содержит информацию о командах, используемых для просмотра, отображения, построения и редактирования твердотельных объектов, рекомендации и последовательность действий при создании твердотельных моделей разной сложности при выполнении практических работ по теме «Трехмерное моделирование», предусмотренных программой МДК 01.04 Информационные технологии в профессиональной деятельности.

Обучающийся должен научиться формировать трехмерную модель, работая с различными трехмерными системами координат, задавать пользовательские системы координат и устанавливать необходимые виды трехмерных моделей.

1 РАБОЧЕЕ ПРОСТРАНСТВО «ЗД МОДЕЛИРОВАНИЕ»

Начиная с AutoCAD 2007 было разработано и встроено в программу специальное рабочее пространство, предназначенное для трехмерных построений.

	Классический AutoCAD	- 🗅 🛛	> 🔒	🛃 🕤	• 🗟 • (3 =		Aut	oCAD 2011
	2D рисование и аннотации	6	Φομ	рмат	Сервис	Рисование	Размеры	Ред	актировать
	3D основные] 🞜 🌡	(力 -	~ - 19	@ G @		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Клас	3D моделирование		<u> </u>	G 🔐	0			• 🎒	`a 🛱 🛛
	Классический AutoCAD	3D моле	ирован	ние	2019) 				
2	Сохранить текущее как Параметры рабочего прос.	Нажмите	F1 для	получе	ения допо	лнительной (правки		
	Адаптация								
						2D рисование 3D основные 3D моделиров Классический Сохранить тек Параметры ра Адаптация	и аннотации вание і AutoCAD сущее как абочего прос	транства	

Рисунок 1.1 – Переход в рабочее пространство «3D моделирование»

Перейти в данное рабочее пространство можно либо в процессе загрузки AutoCAD сразу после запуска, либо уже по ходу работы, выбрав его в раскрывающемся списке на панели инструментов **Рабочие пространства** или из строки состояния (Рисунок 1.1).

2 СИСТЕМЫ КООРДИНАТ

Для задания положения отдельных точек в пространстве используется декартова система координат (X,Y,Z), которая называется *мировой системой координат* (МСК) и является текущей.

В мировой системе координат (МСК) точка начала координат находится в левом нижнем углу графической зоны экрана, там же находится знак, определяющий положительное направление осей X и Y.(Рисунок 2.1)

Третья ось (ось Z) МСК расположена перпендикулярно экрану и направлена от экрана к нам.

Для трехмерной графики важно знать, что система в пространстве сориентирована таким образом, что плоскость ХҮ мировой системы координат (МСК) соответствует горизонтальной плоскости и всегда совпадает с плоскостью графического экрана. Плоскость, в которой строятся двумерные объекты, называется *плоскостью построений*.

Рисунок 2.1 – Пиктограмма мировой системы координат (стиль 3D)

Значок курсора в режиме трехмерных построений состоит из цветных отрезков, параллельных осям текущей системы координат: отрезок оси X имеет коричневый цвет, отрезок оси Y - зеленый цвет, а отрезок оси Z - синий.

Помимо мировой системы координат в AutoCAD широко используется пользовательская система координат (ПСК).

Пользовательская система координат не имеет ограничений и может быть задана в любой точке пространства, что значительно облегчает построения трехмерных объектов.

Пользовательскую систему координат можно создать, воспользовавшись меню Сервис – Новая ПСК (рисунок 2.2). Так же вызвать команду создания новой ПСК можно на вкладках Главная и Вид (рисунок 2.3)

⊑\$	Редактор блоков		1	МСК
	Внешняя ссылка или блок для контекстного редактирования	►	Ŀ	Предыдущая СК
-	Извлечение данных		ţø	Грань
	Связи с данными	►	2	Объект
	Рекордер операций	►	Ŀ	Вид
P.o	Приложения		1	Начало
2.	Сценарий			Zось
	Макросы	►	13	3 точки
	AutoLISP	►	t et	
	Изображение	×	ľ×.	X Y
	Новая ПСК	►	Ľ,	Z

Рисунок 2.2 – Меню создания новой ПСК

<u>¦∠</u> 9 -	t,	L L	
x -	Þ,		
12 -		•	
Координаты 🛛 🛛			

Рисунок 2.3 – Команды создания новой ПСК ленты Главная и Вид

Наиболее часто используются команды создания ПСК:

- с перемещением начала координат (Сервис Новая ПСК Начало)
- поворот вокруг оси (Сервис Новая ПСК Х)
- построение по трем точкам (Сервис Новая ПСК 3 точки)

3 КОМАНДЫ ПРОСМОТРА

Для проектирования и просмотра объектов программа AutoCAD предлагает шесть основных видов и четыре изометрических проекции, которые устанавливаются:

```
меню Вид – 3D виды или вкладка Вид – панель Виды (рисунок 3.1)
```

▲ - (Ô) 3D N	иоделирован	ие 🔻 🗌) 🗁 🔒 📝	∽ - ☆ -	🖨 🔻	
Файл	Правка	Вид Вста	вка Форма	т Сервис	Рисование	Размеры
Главная Те	ло Повер	хность Сеть	визуализа	ция Вставк	а Аннотации	Вид
Щтурвалы • Навигация		ерху изу ева рава ереди ади 3 изометрия		Щ 2D ка 2 Q + С • Ш Не • Ви	аркас прозрачность зуальные стили	
	🖑 СЗ	изометрия		-		
	Дисп	етчер видов				

Рисунок 3.1 – Выбор стандартного вида

Итак, можно выбрать один из следующих типовых видов.

- Сверху точка зрения находится над моделью. Это основной вид вид в плане.
- Снизу объект отображается так, если смотреть на него снизу.
- Слева модель показывается с левой стороны.
- Справа модель показывается с правой стороны.
- Спереди вид соответствует фронтальной проекции на чертежах.
- Сзади модель изображается так, если бы на нее смотрели сзади.
- ЮЗ изометрия юго-западный изометрический вид. В данном случае видны левая, передняя и верхняя стороны модели.
- ЮВ изометрия юго-восточный изометрический вид, пользователю видны правая, передняя и верхняя стороны модели.
- СВ изометрия –северо-восточный изометрический вид позволяет увидеть правую, заднюю и верхнюю стороны модели.
- СЗ изометрия северо-западный изометрический вид приближает к пользователю левую, заднюю и верхнюю стороны конструкции.

4 ОТОБРАЖЕНИЕ ТРЕХМЕРНЫХ ОБЪЕКТОВ

Способ отображения модели задается визуальным стилем. Вызвать команду Визуальные стили можно, выбрав меню Вид – Визуальные стили либо выбрать один из значков на панели Визуальные стили вкладки Вид ленты (рисунок 4.1).

Рисунок 4.1 – Раскрытый список Визуальные стили на вкладке Вид ленты.

По умолчанию в программе имеются 10 различных стилей визуализации.

- 2D каркас объекты отображаются в виде отрезков и кривых, являющихся представлением контуров. Видны растровые и OLEобъекты, учитываются типы и веса линий.
- Каркас объекты отображаются в виде отрезков и кривых, являющихся представлением контуров.
- Скрытие линий объекты отображаются в каркасном представлении; отрезки, изображающие задние грани, скрыты.
- Реалистичный объекты раскрашиваются с учетом присвоенного им цвета или типа материала.
- Концептуальный объекты также заливаются с учетом присвоенного им цвета или типа материала; поверхности сглажены и плавные цветовые переходы.
- Тонированный использование тонирования с плавными переходами.
- Тонированный с кромками использование тонирования с плавными переходами и видимыми кромками.
- Оттенки серого использование тонирования оттенками серого с плавными переходами.
- Эскизный объекты показываются так, как будто нарисованы от руки.
- Просвечивание объекты отображаются частично прозрачными.

Поэкспериментируйте с отображением модели при различных стилях визуализации, чтобы подобрать наиболее подходящий стиль.

5 ТВЕРДОТЕЛЬНЫЕ МОДЕЛИ

В системе AutoCAD для пространственного моделирования объектов используются:

- Стандартные тела параллелепипед, цилиндр, конус, сфера, пирамида, клин, тор.
- Объемные тела, полученные в результате выдавливания замкнутого плоского контура на заданную длину или вдоль заданной линии.
- Тела вращения, созданные в результате вращения замкнутого плоского контура вокруг оси.

Средства (инструменты) построения тел можно выбрать: в меню Рисование - Моделирование и вкладка Главная ленты – Моделирование (в соответствии с рисунком 5.1 а,б,в).

б)

в)

Рисунок 5.1 – Выбор инструментов построения тел а) – в меню Рисование – Моделирование; б) - вкладка Главная ленты – Моделирование (выбор стандартных тел); в) – выбор Выдавить и Вращать.

6 РЕДАКТИРОВАНИЕ ТЕЛ

На основе стандартных и простых тел можно создавать более сложные объекты путем их комбинирования. Такие операции называют *булевыми* (логические операции).

Команды для редактирования тел могут быть выбраны:

- Меню Редактирование Редактирование тел,
- вкладка Главная ленты Редактировать тело (рисунок 6.1),
- вкладка Тело ленты Логические операции (рисунок 6.2).

: 🖬 📑 🖘 - 🔿 - 🚍 =	AutoCAD 2011 Чертеж1.dwg	Введите ключевое слово
Формат Сервис Рисование Размеры	Редактировать Окно Справка Па	араметризация
нтууличэация Вставка Аннотации Вид Уп	 Свойства Копирование свойств Изменить на ПоСлою Объект Подрезка Масштаб аннотативного объекта Стереть Копировать Веркало Подобие Массив Повернуть Массив Повернуть Масштаб Растянуть Увеличить Обрезать Удлинить Разорвать Сопряжение Зо операции 	 Доболочка Доболочка Доболочка
	Редактирование тела	• 💭 Проверить

Рисунок 6.1 – Выбор операций редактирования в меню Редактировать – Редактирование тела

Рисунок 6.2 – Выбор логических операций на вкладке Тело ленты

- Объединение создание объекта сложением нескольких выбранных объектов.
- Вычитание создание отверстий, полостей в твердотельных объектах или для отрезания части объекта.
- Пересечение создание из нескольких пересекающихся объектов один, который является их общей частью.

7 Практическое занятие для выполнения самостоятельной работы СОЗДАНИЕ ТВЕРДОТЕЛЬНЫХ ОБЪЕКТОВ

7.1 Модель 1

Существует несколько способов создания твердотельного объекта. Твердотельную модель можно получить в виде совокупности базовых примитивов, в результате вращения или выдавливания плоского контура или

в результате комбинаций этих способов с использованием булевых операций – объединения, вычитания, пересечения.

Рассмотрим создание модели, изображенной на рисунке 7.1.1

Рисунок 7.1.1- Пример задания

Работу выполняем на формате АЗ в следующей последовательности:

7.1.<u>1 Создание замкнутого контура</u>

- Построить в любом месте формата прямоугольник размером 100х60.
 Команда Прямоугольник выбрать в меню Рисование или на панели Рисование
- Перенести начало координат в левый нижний угол. Выбрать меню Сервис – Новая ПСК – Начало. Использовать объектную привязку при указании точки.
- Провести окружность радиусом 23 мм.
- Построить два прямоугольника размером 20 х 40 в соответствии с рисунком 7.1.2.

Рисунок 7.1.2 - Плоский контур:

а – ортогональная проекция; б – изометрическая проекция.

7.1.<u>2 Выдавливание контура</u>

- Вызвать команду Выдавить меню Рисование Моделирование
- или Лента Главная

I

- Выбрать объекты для выдавливания 3 прямоугольника и окружность.
 Для завершения выбора нажать Enter.
- Задать высоту выдавливания : 50 мм, нажать Enter. Выдавливание производится вверх, вдоль положительного направления оси Z.

Рисунок 7.1.3 - Выдавливание замкнутого контура. Каркасное представление *7.1.<u>3 Булевы операции. Вычитание.</u>*

- Вызвать команду Вычитание меню Редактировать Редактирование тела или Лента Главная
- На запрос Выберите объекты: Выбрать большой параллелепипед для вычитания. Для завершения выбора нажать Enter.
- На запрос Выберите объекты: Указать два малых параллелепипеда и цилиндр, которые будут вычитаться. Для завершения выбора нажать Enter.
- Выбрать в меню Вид Скрыть. Рисунок 7.1. 4

Рисунок 7.1.4 - Модель в режиме удаления невидимых линий

7.1.4 Создание пользовательской системы координат

- Выполнить последовательность Сервис Новая ПСК 3 точки построение системы координат по 3 точкам.
- На запрос Новое начало координат <0,0,0>: Указать начало координат. Использовать объектную привязку.
- На запрос Точка на положительном луче оси X <1,0,0>: Указать точку на положительном направлении оси X. Использовать объектную привязку.
- На запрос Точка на положительном луче оси Y в плоскости XY ПСК <0,1,0>: Указать точку на положительном направлении оси Y. Использовать объектную привязку в соответствии с рисунком 7.1.5.

Рисунок 7.1.5 – Создание пользовательской системы координат

7.1.<u>5 Создание замкнутого контура</u>

 Провести окружность с центром 30,50 и радиусом 25 мм в соответствии с рисунком 7.1.6.

Рисунок 7.1.6 - Плоский контур:

а – ортогональная проекция; б – изометрическая проекция.

7.1.<u>6 Выдавливание контура</u>

• Вызвать команду Выдавить – меню Рисование – Моделирование

- Выбрать окружность для выдавливания. Для завершения нажать Enter
- Задать высоту выдавливания: 100 мм, Enter. Рисунок 7.1.7

Рисунок 7.1.7 - Выдавливание контура

7.1.<u>7 Булевые операции. Вычитание.</u>

- Вызвать команду Вычитание меню Редактировать Редактирование тела или Лента Главная
- На запрос Выберите объекты: Выбрать параллелепипед для вычитания. Для завершения нажать Enter
- На запрос Выберите объекты: Указать цилиндр, который будет вычитаться. Для завершения нажать Enter.
- Выбрать в меню Вид Скрыть. Рисунок 7.1.8

Рисунок 7.1.8 - Модель в режиме удаления невидимых линий

7.1.8 Создание пользовательской системы координат

- Выполнить последовательность Сервис Новая ПСК 3 точки построение системы координат по 3 точкам.
- На запрос Новое начало координат <0,0,0>: Указать начало координат. Использовать объектную привязку.

- На запрос Точка на положительном луче оси Х <1,0,0>: Указать точку на положительном направлении оси Х. Использовать объектную привязку.
- На запрос Точка на положительном луче оси У в плоскости ХУ ПСК <0,1,0>: Указать точку на положительном направлении оси У. Использовать объектную привязку в соответствии с рисунком 7.1.9.

Рисунок 7.1.9 - Создание пользовательской системы координат

7.1.9 Создание замкнутого контура

- Построить 2 прямоугольника размером 15 х 30 мм. Использовать объектную привязку.
- Провести окружность с центром 50,20 и радиусом 11 мм. Рисунок 7.1.10.

Рисунок 7.1.10 - Плоский контур:

а – ортогональная проекция; б – изометрическая проекция.

7.1.<u>10 Выдавливание контура</u>

• Вызвать команду Выдавить – меню Рисование – Моделирование

б)

- Выбрать окружность и 2 прямоугольника для выдавливания. Для завершения нажать Enter
- Задать высоту выдавливания: 60 мм. Для завершения нажать Enter.

Рисунок 7.1.11

Рисунок 7.1.11 - Выдавливание контура

7.1.<u>11 Булевые операции. Вычитание.</u>

- Вызвать команду Вычитание меню Редактировать Редактирование тела или Лента Главная
- На запрос Выберите объекты: Выбрать параллелепипед для вычитания. Для завершения нажать Enter
- На запрос Выберите объекты: Указать 2 созданных параллелепипеда и цилиндр, которые будут вычитаться. Для завершения нажать Enter.
- Выбрать в меню Вид Визуальные стили Концептуальный. Рисунок 7.1.12

Рисунок 7.1.12 - Твердотельная модель детали

7.2 Модель 2

Какую бы сложную форму не имела деталь, ее надо рассматривать как совокупность простейших геометрических тел или их частей.

Построим модель, представленную на рисунке, предварительно выполним следующие действия:

- Проанализируем модель, которую будем создавать, разобьем ее на элементарные тела (примитивы).
- Создадим новый слой Модель, сделаем его текущим.
- С учетом габаритных размеров модели по длине и ширине зададим лимиты чертежа: левый нижний угол 0,0, правый верхний 140,120. Впишем установленное поле в графическую зону экрана, для этого выполним Вид ⇒ Зумирование ⇒ Все.
- Установим шаг привязки 1, шаг сетки 5 и включим режимы Шаг и Сетка
- Сохраним файл с присвоением имени Твердотельная модель.

Рисунок 7.2.1 – Твердотельная модель

7.2.<u>1 Построение основания детали</u>

- Создать пользовательскую систему координат, поместив точку начала координат в точку 90,60. Выбрать меню Сервис Новая ПСК Начало. Сохранить созданную ПСК под именем Низ основания. Выбрать меню Сервис Именованные ПСК... В диалоговом окне на вкладке Именованные ПСК курсор поместить в поле имен ПСК на имя «Без имени» щелкнуть правой кнопкой мыши и в контекстном меню выбрать Переименовать ввести имя ПСК Низ основания щелкнуть по кнопке Установить ОК.
- Создать слой Оси и установить тип линии штрихпунктирная. Начертить две осевые, проходящие через точку начала координат -90,60 вдоль осей X и Y. В случае необходимости изменить масштаб линий на 0.5.

- Слой Модель сделать текущим. Вычертить по размерам наружный контур основания командой Полилиния (рисунок 7.2.2а.)
- Командой **Разорвать в точке** сделать разрыв полилинии в точке **А.** Аналогичное действие выполнить в точке **В.**
- Командой Подобие на расстоянии 6 мм внутрь от наружного контура построить внутренний контур в соответствии с рисунком 7.2.26

Рисунок 7.2.2 - Построение низа основания детали,

- а) наружный контур основания с размерами; б) внутренний контур.
- Командой Область преобразовать наружный контур в область.
- Командой Контур создать область из внутреннего контура (предварительно отключить слой Оси). Выбор команд выполнить в меню Рисование.
- Командой Выдавить (меню Рисование Моделирование) выдавить наружный контур на 26 мм, а внутренний на 20 мм.
- Для наглядности установить Юго-Западную изометрию (Вид -3D виды ЮЗ изометрия).
- Командой Вычитание из наружного тела вычесть внутреннее.

Рисунок 7.2.3 – Применение команды Вычитание

- а) два тела до выполнения команды Вычитание; б) одно тело после выполнения команды Вычитание.
- Выполнить призматический паз в основании детали. Для этого создать новую ПСК. Выбрать в меню Сервис – Именованные ПСК... В диалоговом окне на вкладке Ортогональные ПСК выбрать Спереди и щелкнуть по кнопке Установить – ОК;
- Перенести новую ПСК на переднюю грань детали. Выбрать меню Сервис – Новая ПСК – Начало. Использовать объектную привязку Конточка в плоскости нижнего основания детали в соответствии с рисунком 7.2 .4а.

Рисунок 7.2.4 – Построение паза а) – применение опций ПСК Спереди и Начало; б) – создание параллелепипеда командой Выдавить.

- Командой Полилиния построить прямоугольник по заданным размерам 32х10 (рисунок 7.2.7а) и командой Выдавить выдавить его на высоту (-100), т.к. в текущей ПСК ось Z направлена на пользователя.
- Командой Вычитание из тела основания вычесть призму. Рис. 7.2.5

б)

Рисунок 7.2.5 – Результат действия команды Вычитание.

- В плоскости верхнего основания выполнить призматические отверстия: для этого вернуться к сохраненной (именованной) ПСК Низ основания;
- Скопировать оси в плоскость верхнего основания детали;
- Перенести ПСК Низ основания в верхнюю плоскость основания детали в точку пересечения осей опцией Начало и сохранить вновь созданную ПСК под именем Верх основания.
- Командой Многоугольник построить квадрат с центром в точке 0,34 диаметром описанной окружности 6 и повернуть его на угол 45.
- Выдавить квадрат на (- 6 мм) и скопировать полученное тело на расстояние @0, -68 относительно центра квадрата;
- Вычесть призмы из основания (рисунок 7.2.6). Для наглядности использована команда в меню Вид Скрыть.

Рисунок 7.2.6 – Заключительный этап построения основания

7.2.<u>2 Построение верхней части детали</u>

- Текущую ПСК повернуть вокруг оси Х на 90 в соответствии с рисунком 7.2.7а.
- Для создания усеченного конуса в текущей ПСК построить полилинией замкнутый четырехугольник из точки 0,0. На рисунке

7.2.76 показана полилиния с размерами, взятая в качестве исходного профиля для тела вращения.

a) б) Рисунок 7.2.7 – Построение конуса

а) поворот оси Х на 90; б) построение полилинией исходного профиля.

- Командой Вращение повернуть исходный профиль вокруг оси Y на 360 и объединить его с основанием детали командой Объединение. Теперь это твердотельный объект.
- Установить: меню Вид 3D виды Вид в плане Текущая ПСК. Рисунок 7.2.8

Рисунок 7.2.8 – Вид в плане Текущей ПСК

 Выполнить отверстия в теле детали, состоящее из сферы и цилиндра. Командой Сфера из центра 0,-6 (относительно текущей ПСК) вычертить сферу (твердотельную). Команду выбрать Рисование – Моделирование.

Цилиндр построить аналогично конусу вращения: построить прямоугольник из точки начала координат со стороной основания равной радиусу цилиндра 7.5 мм (по оси X) и высотой (по оси Y) равной высоте конуса или чуть больше в соответствии с рисунком 7.2.9а.

- Командой Вращение повернуть прямоугольник вокруг оси Y на 360.
 Рисунок 7.2.96.
- Командой Вычитание вычесть сферу и цилиндр из тела детали в соответствии с рисунком 7.2.9в.
- Результат построений можно посмотреть установив Юго-западную изометрию и использовать команду Скрыть. Рисунок 7.2.9г.

в) г)Рисунок 7.2.9 – Построение цилиндра и сферы

7.2.<u>3 Построение выступа</u>

- Создать новую ПСК: использовать Сервис Новая ПСК 3 точки построение системы координат по 3 точкам.
- Указать начало координат с использованием объектной привязки, указать точку на положительном направлении оси X, указать точку на положительном направлении оси Y в соответствии с рисунком 7.2.10a
- Установить вид сверху: меню Вид 3D виды Вид в плане Текущая ПСК. Рисунок 7.2.10а
- Вычертить командой Полилиния плоскую фигуру (на рисунке 7.2.106 выделена толстой линией). Вид сверху можно не устанавливать, построения производить на изометрической проекции.
- Выдавить построенную плоскую фигуру на высоту 15 мм. Объединить созданные тела. Результат представлен на рисунке 7.2.10в. Использовать команду Скрыть.

в) Г)Рисунок 7.2.10 – Построение выступа детали

- Повернуть текущую ПСК на 90 вокруг оси Х и установить Вид в плане: меню Вид – 3D виды – Вид в плане – Текущая ПСК.
- Возвратиться в юго-западную изометрию и перенести ПСК опцией Начало на переднюю грань выступа в соответствии с рисунком 7.2.11а.
- В текущей ПСК вычертить окружность с центром 16,6 и радиусом 6 мм в соответствии с рисунком 7.2.116.
- Выдавить на высоту минус **60** мм в соответствии с рисунком 7.2.11в.
- Вычесть полученный цилиндр из основной детали в соответствии с рисунком 7.2.11г.

Рисунок 7.2.11 – Построение отверстий в выступе

На рисунке 7.2.11г показан окончательный результат всех построений с применением команды **Вид – Скрыть (**системная переменная DISPSILH =0)

Контрольные вопросы:

1. Какие типы трёхмерных моделей используются в AutoCad для представления реальных объектов?

2. Приведите сравнительную характеристику достоинств и недостатков каркасных, поверхностных и монолитных моделей.

3. Опишите команды и их опции для отображения и просмотра трёхмерных объектов.

4. Дайте характеристику методам ввода координат, поддерживаемых AutoCad.

5. Что представляют собой фильтры точек?

6. Какие системы координат используются в AutoCad?

ЛИТЕРАТУРА

Боголюбов С.К. «Инженерная графика: учебник для средних спец. уч. зав. – М.: Изд-во: Машиностроение, 2006, 2009.

Жарков Н.В. AutoCAD 2011: официальная русская версия. Эффективный самоучитель. – СПб.: Наука и Техника, 2011

Миронов Р. С. Индивидуальные задания по курсу черчения – М., Высшая школа, 2002

Орлов А. AutoCAD 2014 (+CD с видеокурсом) – СПб.: Питер,2014.-384с.: ил.

Погорелов В.И. AutoCAD 2009: 3D – моделирование, СПб., ВХВ-Петербург, 2009 -400с., ил.

Полищук Н., Савельева В. Самоучитель AutoCAD 2009. Трехмерное проектирование. - СПб., ВХВ- Петербург, 2009 -416 с.: ил.